The Design and I mization (ASLR)

Introduction

Address Space Layout Randomization (ASLR), .
originally released by the PaX team in Linux, 1s a &A)
security countermeasure which randomizes program ‘%‘5&
memory layouts so that the base addresses of
different modules Dbecome non-fixed in wvirtual f\
memory every time programs are run. In this way, «;g
crucial addresses cannot be located easily to induce o o
the memory corruption which is the first step 1n Figure 1: Pax Tux

|

hacking. See Figure 2. the Mascot of ASLR

Without ASLR With ASLR

Figure 2: Virtual Memory Layouts
In this project, an ASLR was designed and implemented in a
pre-Vista Windows kernel. 1Its effectiveness and possible

improvements were studied.

Objective

To implement ASLR in the WRK of an MS Windows OS before Vista
To evaluate and analyze the efficiency of the ASLR implementation

To improve the implementation with different methods

W ND

To prove or disprove the statement:

® ASILR in 32-bit architectures is ineffective

Methodology

@ Flow chart:

e —————— MiFindEmptyAddressRangelnTree (ASLR)
T (//WRK-v.12/base/ntos/mm/addrsup.c)

MiFindNodeOrParent
(StartingAddress) ;

Result ==
TabilelnsertAsLen?

Result ==
TablelnsertAsRight?

true Enough ue
space?
false

—){ Set FallBack flag]

P

—
/R esult == true
TableFoundNode?

false | | J _Fall Back l I

Pseudo Random Number Generator (PRNG) Memory Allocation Mechanism

Fall Back

Result

Complexity Performance
The ASLR complexity The performance was measured by the
= 0 (AVL search for the random address time needed to run 10k merge-sorts.
+ Fall Back) Without ASLR, it spent 27 minutes;
= O((log N) + N) with ASLR, it spent 37 minutes, which
= O (N) was 37% more.
where N is the number of VAD nodes The architecture is not the reason

for the decrease in performance. The
The complexity is the same as the reason 1is that a faster memory
original architecture. allocation mechanism called ‘VAD
bitmap’ was not modified to adapt to

the ASILR.

Address Distribution
10k address samples were collected.

Using MT, there was a uniform address

distribution.

Figure 6: Address Distribution

Il Address Space Fragmentation

I Address Space Fragmentation

0x00000000 0x00000000

0x11369000

0x11369000

igure 7: Memory Layout (Original) Figure 8: Memory Layout (ASLR)

Conclusion

In conclusion, an ASLR was successfully designed and implemented in the WRK.
Its efficiency was evaluated. Also, the random address quality was improved
by MT’ . Other possible improvements were proposed without implementations.
However, they may not be able to bring substantial improvements to the ASLR
in 32-bit architecture. Therefore, the statement ‘ASLR 1n 32-bit
architectures is ineffective’ is still correct when ASLR protects server

systems against massive network attacks.

