

The Design and Implementation of Address Space Layout Randomization (ASLR)

 in the Windows Research Kernel (WRK)

Student: MAK Chung Leung

Supervisor: Prof. Lin GU

Introduction

Address Space Layout Randomization (ASLR),

originally released by the PaX team in Linux, is a

security countermeasure which randomizes program

memory layouts so that the base addresses of

different modules become non-fixed in virtual

memory every time programs are run. In this way,

crucial addresses cannot be located easily to induce

the memory corruption which is the first step in

hacking. See Figure 2.

Figure 1: PaX TuX

the Mascot of ASLR

Without ASLR With ASLR

Figure 2: Virtual Memory Layouts

In this project, an ASLR was designed and implemented in a

pre-Vista Windows kernel. Its effectiveness and possible

improvements were studied.

Objective

1. To implement ASLR in the WRK of an MS Windows OS before Vista

2. To evaluate and analyze the efficiency of the ASLR implementation

3. To improve the implementation with different methods

4. To prove or disprove the statement:

 ASLR in 32-bit architectures is ineffective

Figure 3: the Design of ASLR Architecture

Pseudo Random Number Generator (PRNG)

To generate random addresses, a PRNG is

needed. Random numbers generated should

distribute evenly. Otherwise, some

addresses occur with higher

probabilities, and can be used attacks to

increase success rates. A high quality

PRNG ‘Mersenne Twister (MT)’ was used. It

is fast but cryptographically insecure.

Memory Allocation Mechanism

In Windows, Virtual Address

Describer (VAD) tree, which is

just an AVL tree, is used to search

for memory space. Originally, the

search starts from the lowest

address. ASLR can be deployed

through replacing the lowest

address with a random address.

Fall Back

If the random address generated is occupied, the memory

allocation mechanism enters the Fall Back stage where

empty memory space is searched upward; when the search

reaches the highest address, it rolls back to the

lowest address to continue the search upward; when the

starting point is encountered again, the whole virtual

address space is completely covered.

Figure 4: Original Search

Figure 5: ASLR Search

Methodology

Result

Conclusion

In conclusion, an ASLR was successfully designed and implemented in the WRK.

Its efficiency was evaluated. Also, the random address quality was improved

by ‘MT’. Other possible improvements were proposed without implementations.

However, they may not be able to bring substantial improvements to the ASLR

in 32-bit architecture. Therefore, the statement ‘ASLR in 32-bit

architectures is ineffective’ is still correct when ASLR protects server

systems against massive network attacks.

Complexity Performance

The ASLR complexity

= O (AVL search for the random address

+ Fall Back)

= O((log N) + N)

= O(N)

where N is the number of VAD nodes

The complexity is the same as the

original architecture.

 The performance was measured by the

time needed to run 10k merge-sorts.

Without ASLR, it spent 27 minutes;

with ASLR, it spent 37 minutes, which

was 37% more.

The architecture is not the reason

for the decrease in performance. The

reason is that a faster memory

allocation mechanism called ‘VAD

bitmap’ was not modified to adapt to

the ASLR.

Address Distribution

10k address samples were collected.

Using MT, there was a uniform address

distribution.

Figure 6: Address Distribution

Figure 7: Memory Layout (Original)

Figure 8: Memory Layout (ASLR)

